Mean Values of the auxiliary function
Abstract
Let $\mathop{\mathcal R}(s)$ be the function related to $\zeta(s)$ found by Siegel in the papers of Riemann. In this paper we obtain the main terms of the mean values \[\frac{1}{T}\int_0^T |\mathop{\mathcal R}(\sigma+it)|^2\Bigl(\frac{t}{2\pi}\Bigr)^\sigma\,dt, \quad\text{and}\quad \frac{1}{T}\int_0^T |\mathop{\mathcal R}(\sigma+it)|^2\,dt.\] Giving complete proofs of some result of the paper of Siegel about the Riemann Nachlass. Siegel follows Riemann to obtain these mean values. We have followed a more standard path, and explain the difficulties we encountered in understanding Siegel's reasoning.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- arXiv:
- arXiv:2406.13278
- Bibcode:
- 2024arXiv240613278A
- Keywords:
-
- Mathematics - Number Theory;
- Primary 11M06;
- Secondary 30D99
- E-Print:
- 9 pages, 1 figure