Location of blow-up points in fully parabolic chemotaxis systems with spatially heterogeneous logistic source
Abstract
We consider the fully parabolic, spatially heterogeneous chemotaxis-growth system \begin{align*} \begin{cases} u_t = \Delta u - \nabla\cdot(u\nabla v) + \kappa(x)u-\mu(x)u^2, \\ v_t = \Delta v - v + u \end{cases} \end{align*} in bounded domains $\Omega\subset \mathbb{R}^2$ and show that the blow-up set is contained in the set of zeroes of $\mu$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- arXiv:
- arXiv:2406.11746
- Bibcode:
- 2024arXiv240611746F
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35B44;
- 35K55;
- 92C17
- E-Print:
- 16 pages