Global well-posedness, scattering and blow-up for the energy-critical, Schrödinger equation with general nonlinearity in the radial case
Abstract
In this paper, we study the well-posedness theory and the scattering asymptotics for the energy-critical, Schrödinger equation with general nonlinearity \begin{equation*} \left\{\begin{array}{l} i \partial_t u+\Delta u + f(u)=0,\ (x, t) \in \mathbb{R}^N \times \mathbb{R}, \\ \left.u\right|_{t=0}=u_0 \in H ^1(\mathbb{R}^N), \end{array}\right. \end{equation*} where $f:\mathbb{C}\rightarrow \mathbb{C}$ satisfies Sobolev critical growth condition. Using contraction mapping method and concentration compactness argument, we obtain the well-posedness theory in proper function spaces and scattering asymptotics. This paper generalizes the conclusions in \cite{KCEMF2006}(Invent. Math).
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- arXiv:
- arXiv:2406.11532
- Bibcode:
- 2024arXiv240611532W
- Keywords:
-
- Mathematics - Analysis of PDEs
- E-Print:
- 46. arXiv admin note: substantial text overlap with arXiv:math/0610266 by other authors