Back to the Color: Learning Depth to Specific Color Transformation for Unsupervised Depth Estimation
Abstract
Virtual engines can generate dense depth maps for various synthetic scenes, making them invaluable for training depth estimation models. However, discrepancies between synthetic and real-world colors pose significant challenges for depth estimation in real-world scenes, especially in complex and uncertain environments encountered in unsupervised monocular depth estimation tasks. To address this issue, we propose Back2Color, a framework that predicts realistic colors from depth using a model trained on real-world data, thus transforming synthetic colors into their real-world counterparts. Additionally, we introduce the Syn-Real CutMix method for joint training with both real-world unsupervised and synthetic supervised depth samples, enhancing monocular depth estimation performance in real-world scenes. Furthermore, to mitigate the impact of non-rigid motions on depth estimation, we present an auto-learning uncertainty temporal-spatial fusion method (Auto-UTSF), which leverages the strengths of unsupervised learning in both temporal and spatial dimensions. We also designed VADepth, based on the Vision Attention Network, which offers lower computational complexity and higher accuracy than transformers. Our Back2Color framework achieves state-of-the-art performance on the Kitti dataset, as evidenced by improvements in performance metrics and the production of fine-grained details. This is particularly evident on more challenging datasets such as Cityscapes for unsupervised depth estimation.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.07741
- arXiv:
- arXiv:2406.07741
- Bibcode:
- 2024arXiv240607741Z
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition