Vanishing properties of Kloosterman sums and Dyson's conjectures
Abstract
In a previous paper arXiv:2406.06294 [math.NT], the author proved the exact formulae for ranks of partitions modulo each prime $p\geq 5$. In this paper, for $p=5$ and $7$, we prove special vanishing properties of the Kloosterman sums appearing in the exact formulae. These vanishing properties imply a new proof of Dyson's rank conjectures. Specifically, we give a new proof of Ramanujan's congruences $p(5n+4)\equiv 0\pmod 5$ and $p(7n+5)\equiv 0\pmod 7$.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.07469
- arXiv:
- arXiv:2406.07469
- Bibcode:
- 2024arXiv240607469S
- Keywords:
-
- Mathematics - Number Theory;
- 11L05;
- 11P83;
- 11P82