Arbitrarily slow decay in the logarithmically averaged Sarnak conjecture
Abstract
In 2017 Tao proposed a variant Sarnak's Möbius disjointness conjecture with logarithmic averaging: For any zero entropy dynamical system $(X,T)$, $\frac{1}{\log N} \sum_{n=1} ^N \frac{f(T^n x) \mu (n)}{n}= o(1)$ for every $f\in \mathcal{C}(X)$ and every $x\in X$. We construct examples showing that this $o(1)$ can go to zero arbitrarily slowly. Nonetheless, all of our examples satisfy the conjecture.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.06956
- arXiv:
- arXiv:2406.06956
- Bibcode:
- 2024arXiv240606956A
- Keywords:
-
- Mathematics - Dynamical Systems;
- Mathematics - Number Theory
- E-Print:
- Preprint version, 12 pages. To appear in JMAA