Radial X-ray profiles of simulated galaxies: Contributions from hot gas and XRBs
Abstract
Theoretical models of structure formation predict the presence of a hot gaseous atmosphere around galaxies. While this hot circum-galactic medium (CGM) has been observationally confirmed through UV absorption lines, the detection of its direct X-ray emission remains scarce. We investigate theoretical predictions of the intrinsic CGM X-ray surface brightness (SB) using simulated galaxies and connect them to their global properties such as gas temperature, hot gas fraction and stellar mass. We select a sample of galaxies from the ultra-high resolution ($48\ \rm{cMpc\, h^{-1}}$) cosmological volume of the Magneticum Pathfinder set of hydrodynamical cosmological simulations. We classify them as star-forming (SF) or quiescent (QU) based on their specific star-formation rate. For each galaxy we generate X-ray mock data using the X-ray photon simulator PHOX, from which we obtain SB profiles out to the virial radius for different X-ray emitting components, namely gas, active galactic nuclei and X-ray binaries (XRBs). We fit a $\beta$-profile to each galaxy and observe trends between its slope and global quantities of the simulated galaxy. We find marginal differences between the average total SB profile of the CGM in SF and QU galaxies, with the contribution from hot gas being the largest ($>50\%$) at radii $r>0.05\,R_{\rm{vir}}$. The contribution from X-ray binaries (XRBs) equals the gas contribution for small radii and is non-zero for large radii. The galaxy population shows positive correlations between global properties and normalization of the SB profile. The slope of fitted $\beta$-profiles correlates strongly with the total gas luminosity, which in turn shows strong connections to the current accretion rate of the central super-massive black hole (SMBH).
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.02686
- arXiv:
- arXiv:2406.02686
- Bibcode:
- 2024arXiv240602686V
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 19 pages + 3 appendix, 15 figures