On the estimate $M(x)=o(x)$ for Beurling generalized numbers
Abstract
We show that the sum function of the Möbius function of a Beurling number system must satisfy the asymptotic bound $M(x)=o(x)$ if it satisfies the prime number theorem and its prime distribution function arises from a monotone perturbation of either the classical prime numbers or the logarithmic integral.
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.00736
- arXiv:
- arXiv:2406.00736
- Bibcode:
- 2024arXiv240600736V
- Keywords:
-
- Mathematics - Number Theory;
- 11N80
- E-Print:
- 9 pages