Iwasawa's main conjecture for Rankin-Selberg motives in the anticyclotomic case
Abstract
In this article, we study the Iwasawa theory for cuspidal automorphic representations of $\mathrm{GL}(n)\times\mathrm{GL}(n+1)$ over CM fields along anticyclotomic directions, in the framework of the Gan-Gross-Prasad conjecture for unitary groups. We prove one-side divisibility of the corresponding Iwasawa main conjecture: when the global root number is $1$, the $p$-adic $L$-function belongs to the characteristic ideal of the Iwasawa Bloch-Kato Selmer group; when the global root number is $-1$, the square of the characteristic ideal of a certain Iwasawa module is contained in the characteristic ideal of the torsion part of the Iwasawa Bloch-Kato Selmer group (analogous to Perrin-Riou's Heegner point main conjecture).
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2024
- DOI:
- 10.48550/arXiv.2406.00624
- arXiv:
- arXiv:2406.00624
- Bibcode:
- 2024arXiv240600624L
- Keywords:
-
- Mathematics - Number Theory;
- 11G05;
- 11G18;
- 11G40;
- 11R34
- E-Print:
- 105 pages