Enhancement of the Cauchy-Schwarz Inequality and Its Implications for Numerical Radius Inequalities
Abstract
In this article, we establish an improvement of the Cauchy-Schwarz inequality. Let $x, y \in \mathcal{H},$ and let $f: (0,1) \rightarrow \mathbb{R}^+$ be a well-defined function, where $\mathbb{R}^+$ denote the set of all positive real numbers. Then \[|\langle x, y \rangle|^2 \leq \frac{f(t)}{1+f(t)} \|x\|^2 \|y\|^2 + \frac{1}{1+ f(t)} |\langle x, y \rangle | \|x\|\|y\|. \] We have applied this result to derive new and improved upper bounds for the numerical radius.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2024
- DOI:
- arXiv:
- arXiv:2405.19698
- Bibcode:
- 2024arXiv240519698N
- Keywords:
-
- Mathematics - Functional Analysis;
- 47A12;
- 47A30