Projective modules over Rees-like algebras and its monoid extensions
Abstract
Let $A$ be a Rees-like algebra of dimension $d$ and $N$ a commutative partially cancellative torsion-free seminormal monoid. We prove the following results. \begin{enumerate} \item Let $P$ be a finitely generated projective $A$-module of $\rank\geq d$. Then $(i)$ $P$ has a unimodular element; $(ii)$ The action of $\EL(A\oplus P)$ on $\Um(A\oplus P)$ is transitive. \item Let $P$ be a finitely generated projective $A[N]$-module of $\rank~r$. Then $(i)$ $P$ has a unimodular element for $r\geq\max\{3,d\}$; $(ii)$ The action of $\EL(A[N]\oplus P)$ on $\Um(A[N]\oplus P)$ is transitive for $r\geq\max\{2,d\}$. \end{enumerate} These improve the classical results of Serre \cite{Se58} and Bass \cite{Ba64}.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2024
- DOI:
- 10.48550/arXiv.2405.17096
- arXiv:
- arXiv:2405.17096
- Bibcode:
- 2024arXiv240517096B
- Keywords:
-
- Mathematics - Commutative Algebra;
- Primary 13C10;
- Secondary 19A13;
- 19A15
- E-Print:
- Comments are welcome, Submitted to the journal