The density-bounded twilight of starbursts in the early Universe
Abstract
The peculiar nebular emission displayed by galaxies in the early Universe presents a unique opportunity to gain insight into the regulation of star formation in extreme environments. We investigate 500 (109) galaxies with deep NIRSpec/PRISM observations from the JADES survey at $z>2$ ($z>5.3$), finding 52 (26) galaxies with Balmer line ratios more than $1\sigma$ inconsistent with Case B recombination. These anomalous Balmer emitters (ABEs) cannot be explained by dust attenuation, indicating a departure from Case B recombination. To address this discrepancy, we model density-bounded nebulae with the photoionisation code CLOUDY. Density-bounded nebulae show anomalous Balmer line ratios due to Lyman line pumping and a transition from the nebulae being optically thin to optically thick for Lyman lines with increasing cloud depth. The H$\alpha$/H$\beta$ versus H$\gamma$/H$\beta$ trend of density-bounded models is robust to changes in stellar age of the ionising source, gas density, and ionisation parameter; however, increasing the stellar metallicity drives a turnover in the trend. This is due to stronger stellar absorption features around Ly$\gamma$ reducing H$\beta$ fluorescence, allowing density-bounded models to account for all observed Balmer line ratios. ABEs show higher [OIII]/[OII], have steeper ultra-violet slopes, are fainter, and are more preferentially Ly$\alpha$ emitters than galaxies which are consistent with Case B and little dust. These findings suggest that ABEs are galaxies that have become density bounded during extreme quenching events, representing a transient phase of $\sim$20 Myr during a fast breathing mode of star formation.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2024
- DOI:
- arXiv:
- arXiv:2405.15859
- Bibcode:
- 2024arXiv240515859M
- Keywords:
-
- Astrophysics - Astrophysics of Galaxies
- E-Print:
- 12 pages, 9 figures, submitted to MNRAS, comments welcome