On two-generator subgroups of mapping torus groups
Abstract
We prove that if $G_\phi=\langle F, t| t x t^{-1} =\phi(x), x\in F\rangle$ is the mapping torus group of an injective endomorphism $\phi: F\to F$ of a free group $F$ (of possibly infinite rank), then every two-generator subgroup $H$ of $G_\phi$ is either free or a sub-mapping torus. As an application we show that if $\phi\in \mathrm{Out}(F_r)$ (where $r\ge 2$) is a fully irreducible atoroidal automorphism then every two-generator subgroup of $G_\phi$ is either free or has finite index in $G_\phi$.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2024
- DOI:
- 10.48550/arXiv.2405.08985
- arXiv:
- arXiv:2405.08985
- Bibcode:
- 2024arXiv240508985A
- Keywords:
-
- Mathematics - Group Theory;
- Primary 20F65;
- Secondary 20F05;
- 57M
- E-Print:
- 18 pages