On the Euler characteristic of $S$-arithmetic groups
Abstract
We show that the sign of the Euler characteristic of an $S$-arithmetic subgroup of a simple $k$-group over a number field $k$ depends on the $S$-congruence completion only. Consequently, the sign is a profinite invariant for such $S$-arithmetic groups with the congruence subgroup property. This generalizes previous work of the first author with Kionke-Raimbault-Sauer.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2024
- DOI:
- 10.48550/arXiv.2405.05050
- arXiv:
- arXiv:2405.05050
- Bibcode:
- 2024arXiv240505050K
- Keywords:
-
- Mathematics - Group Theory;
- Mathematics - Number Theory;
- 22E40;
- 20E18;
- 11E72
- E-Print:
- 19 pages. Rearranged introduction