SPIRou spectropolarimetry of the T Tauri star TW Hydrae: magnetic fields, accretion, and planets
Abstract
In this paper, we report near-infrared observations of the classical T Tauri star TW Hya with the SPIRou high-resolution spectropolarimeter and velocimeter at the 3.6-m Canada-France-Hawaii Telescope in 2019, 2020, 2021, and 2022. By applying Least-Squares Deconvolution (LSD) to our circularly polarized spectra, we derived longitudinal fields that vary from year to year from -200 to +100 G, and exhibit low-level modulation on the 3.6 d rotation period of TW Hya, despite the star being viewed almost pole-on. We then used Zeeman-Doppler Imaging to invert our sets of unpolarized and circularly polarized LSD profiles into brightness and magnetic maps of TW Hya in all four seasons, and obtain that the large-scale field of this T Tauri star mainly consists of a 1.0-1.2 kG dipole tilted at about 20° to the rotation axis, whereas the small-scale field reaches strengths of up to 3-4 kG. We find that the large-scale field is strong enough to allow TW Hya to accrete material from the disc on the polar regions at the stellar surface in a more or less geometrically stable accretion pattern, but not to succeed in spinning down the star. We also report the discovery of a radial velocity signal of semi-amplitude $11.1^{+3.3}_{-2.6}$ m s-1 (detected at 4.3σ) at a period of 8.3 d in the spectrum of TW Hya, whose origin may be attributed to either a non-axisymmetric density structure in the inner accretion disc, or to a $0.55^{+0.17}_{-0.13}$MꝜ candidate close-in planet (if orbiting in the disc plane), at an orbital distance of 0.075 ± 0.001 au.
- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- July 2024
- DOI:
- arXiv:
- arXiv:2405.04461
- Bibcode:
- 2024MNRAS.531.3256D
- Keywords:
-
- Astrophysics - Solar and Stellar Astrophysics;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- MNRAS, in press (23 pages, 16 figures, 6 tables)