U-DiTs: Downsample Tokens in U-Shaped Diffusion Transformers
Abstract
Diffusion Transformers (DiTs) introduce the transformer architecture to diffusion tasks for latent-space image generation. With an isotropic architecture that chains a series of transformer blocks, DiTs demonstrate competitive performance and good scalability; but meanwhile, the abandonment of U-Net by DiTs and their following improvements is worth rethinking. To this end, we conduct a simple toy experiment by comparing a U-Net architectured DiT with an isotropic one. It turns out that the U-Net architecture only gain a slight advantage amid the U-Net inductive bias, indicating potential redundancies within the U-Net-style DiT. Inspired by the discovery that U-Net backbone features are low-frequency-dominated, we perform token downsampling on the query-key-value tuple for self-attention that bring further improvements despite a considerable amount of reduction in computation. Based on self-attention with downsampled tokens, we propose a series of U-shaped DiTs (U-DiTs) in the paper and conduct extensive experiments to demonstrate the extraordinary performance of U-DiT models. The proposed U-DiT could outperform DiT-XL/2 with only 1/6 of its computation cost. Codes are available at https://github.com/YuchuanTian/U-DiT.
- Publication:
-
arXiv e-prints
- Pub Date:
- May 2024
- DOI:
- arXiv:
- arXiv:2405.02730
- Bibcode:
- 2024arXiv240502730T
- Keywords:
-
- Computer Science - Computer Vision and Pattern Recognition
- E-Print:
- 12 pages, 5 figures