Approximation Algorithms for Hop Constrained and Buy-at-Bulk Network Design via Hop Constrained Oblivious Routing
Abstract
We consider two-cost network design models in which edges of the input graph have an associated cost and length. We build upon recent advances in hop-constrained oblivious routing to obtain two sets of results. We address multicommodity buy-at-bulk network design in the nonuniform setting. Existing poly-logarithmic approximations are based on the junction tree approach [CHKS09,KN11]. We obtain a new polylogarithmic approximation via a natural LP relaxation. This establishes an upper bound on its integrality gap and affirmatively answers an open question raised in [CHKS09]. The rounding is based on recent results in hop-constrained oblivious routing [GHZ21], and this technique yields a polylogarithmic approximation in more general settings such as set connectivity. Our algorithm for buy-at-bulk network design is based on an LP-based reduction to hop constrained network design for which we obtain LP-based bicriteria approximation algorithms. We also consider a fault-tolerant version of hop constrained network design where one wants to design a low-cost network to guarantee short paths between a given set of source-sink pairs even when k-1 edges can fail. This model has been considered in network design [GL17,GML18,AJL20] but no approximation algorithms were known. We obtain polylogarithmic bicriteria approximation algorithms for the single-source setting for any fixed k. We build upon the single-source algorithm and the junction-tree approach to obtain an approximation algorithm for the multicommodity setting when at most one edge can fail.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2024
- DOI:
- arXiv:
- arXiv:2404.16725
- Bibcode:
- 2024arXiv240416725C
- Keywords:
-
- Computer Science - Data Structures and Algorithms