On some determinants arising from quadratic residues
Abstract
Let $p>3$ be a prime, and let $d\in\mathbb Z$ with $p\nmid d$. For the determinants $$S_m(d,p)=\det\left[(i^2+dj^2)^{m}\right]_{1\leqslant i,j \leqslant (p-1)/2}\ \ \left(\frac{p-1}2\leqslant m\leqslant p-1\right),$$ Sun recently determined $S_m(d,p)$ modulo $p$ when $m\in\{p-2,p-3\}$ and $(\frac {-d}p)=-1$. In this paper, we obtain $S_{p-2}(d,p)$ modulo $p$ in the remaining case $(\frac{-d}p)=1$, and determine the Legendre symbols $(\frac{S_{p-3}\,(d,p)}p)$ and $(\frac{S_{p-4}\,(d,p)}p)$ in some special cases.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2024
- DOI:
- 10.48550/arXiv.2404.11547
- arXiv:
- arXiv:2404.11547
- Bibcode:
- 2024arXiv240411547R
- Keywords:
-
- Mathematics - Number Theory;
- 11A15;
- 11C20;
- 15A15
- E-Print:
- 14 pages