Exploring the baryonic effect signature in the Hyper Suprime-Cam Year 3 cosmic shear two-point correlations on small scales: the $S_8$ tension remains present
Abstract
The baryonic feedback effect is considered as a possible solution to the so-called $S_8$ tension indicated in cosmic shear cosmology. The baryonic effect is more significant on smaller scales, and affects the cosmic shear two-point correlation functions (2PCFs) with different scale- and redshift-dependencies from those of the cosmological parameters. In this paper, we use the Hyper Suprime-Cam Year 3 (HSC-Y3) data to measure the cosmic shear 2PCFs ($\xi_{\pm}$) down to 0.28 arcminutes, taking full advantage of the high number density of source galaxies in the deep HSC data, to explore a possible signature of the baryonic effect. While the published HSC analysis used the cosmic shear 2PCFs on angular scales, which are sensitive to the matter power spectrum at $k\lesssim 1~h{\rm Mpc}^{-1}$, the smaller scale HSC cosmic shear signal allows us to probe the signature of matter power spectrum up to $k\simeq 20~h{\rm Mpc}^{-1}$. Using the accurate emulator of the nonlinear matter power spectrum, DarkEmulator2, we show that the dark matter-only model can provide an acceptable fit to the HSC-Y3 2PCFs down to the smallest scales. In other words, we do not find any clear signature of the baryonic effects or do not find a systematic shift in the $S_8$ value with the inclusion of the smaller-scale information as would be expected if the baryonic effect is significant. Alternatively, we use a flexible 6-parameter model of the baryonic effects, which can lead to both enhancement and suppression in the matter power spectrum compared to the dark matter-only model, to perform the parameter inference of the HSC-Y3 2PCFs. We find that the small-scale HSC data allow only a fractional suppression of up to 5 percent in the matter power spectrum at $k\sim 1~h{\rm Mpc}^{-1}$, which is not sufficient to reconcile the $S_8$ tension.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2024
- DOI:
- arXiv:
- arXiv:2403.20323
- Bibcode:
- 2024arXiv240320323T
- Keywords:
-
- Astrophysics - Cosmology and Nongalactic Astrophysics
- E-Print:
- 30 pages, 16 figures