On the Exact Fourier Dimension of Sets of Well-Approximable Matrices
Abstract
We compute the exact Fourier dimension of the set of $\Psi$-well-approximable $m \times n$ matrices (and the set of $\Psi$-well-approximable numbers) in the homogeneous and inhomogeneous cases for any approximation function $\Psi$ satisfying $\sum_{q \in \mathbb{Z}^n} \Psi(q)^m < \infty$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2024
- DOI:
- 10.48550/arXiv.2403.19410
- arXiv:
- arXiv:2403.19410
- Bibcode:
- 2024arXiv240319410C
- Keywords:
-
- Mathematics - Number Theory