Con-CDVAE: A method for the conditional generation of crystal structures
Abstract
In recent years, progress has been made in generating new crystalline materials using generative machine learning models, though gaps remain in efficiently generating crystals based on target properties. This paper proposes the Con-CDVAE model, an extension of the Crystal Diffusion Variational Autoencoder (CDVAE), for conditional crystal generation. We introduce innovative components, design a two-step training method, and develop three unique generation strategies to enhance model performance. The effectiveness of Con-CDVAE is demonstrated through extensive testing under various conditions, including both single and combined property targets. Ablation studies further underscore the critical role of the new components in achieving our model's performance. Additionally, we validate the physical credibility of the generated crystals through Density Functional Theory (DFT) calculations, confirming Con-CDVAE's potential in material science research.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2024
- DOI:
- 10.48550/arXiv.2403.12478
- arXiv:
- arXiv:2403.12478
- Bibcode:
- 2024arXiv240312478Y
- Keywords:
-
- Condensed Matter - Materials Science