Arithmetic on $q$-deformed rational numbers
Abstract
Recently, Morier-Genoud and Ovsienko introduced a $q$-analog of rational numbers. More precisely, for an irreducible fraction $\frac{r}s>0$, they constructed coprime polynomials ${\mathcal R}_{\frac{r}s}(q), {\mathcal S}_{\frac{r}s}(q) \in {\mathbb Z}[q]$ with ${\mathcal R}_{\frac{r}s}(1)=r, {\mathcal S}_{\frac{r}s}(1)=s$. Their theory has a rich background and many applications. By definition, if $r \equiv r' \pmod{s}$, then ${\mathcal S}_{\frac{r}s}(q)={\mathcal S}_{\frac{r'}s}(q)$. We show that $rr'=-1 \pmod{s}$ implies ${\mathcal S}_{\frac{r}s}(q)={\mathcal S}_{\frac{r'}s}(q)$, and it is conjectured that the converse holds if $s$ is prime (and $r \not \equiv r' \pmod{s}$). We also show that $s$ is a multiple of 3 (resp. 4) if and only if ${\mathcal S}_{\frac{r}s}(\zeta)=0$ for $\zeta=(-1+\sqrt{-3})/2$ (resp. $\zeta=i$). We give applications to the representation theory of quivers of type $A$ and the Jones polynomials of rational links.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2024
- DOI:
- 10.48550/arXiv.2403.08446
- arXiv:
- arXiv:2403.08446
- Bibcode:
- 2024arXiv240308446K
- Keywords:
-
- Mathematics - Combinatorics;
- Mathematics - Quantum Algebra;
- 05A30;
- 11A55;
- 16G20;
- 57K14
- E-Print:
- 33 pages. Comments welcome