Lepowsky's and Wakimoto's product formulas for the affine Lie algebras $C_l^{(1)}$
Abstract
In this paper, we recall Lepowsky's and Wakimoto's product character formulas formulated in a new way by using arrays of specialized weighted crystals of negative roots for affine Lie algebras of type $C_l^{(1)}$, $D_{l+1}^{(2)}$ and $A_{2l}^{(2)}$. Lepowsky-Wakimoto's infinite periodic products appear as one side of (conjectured) Rogers-Ramanujan-type combinatorial identities for affine Lie algebras of type $C_l^{(1)}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2024
- DOI:
- 10.48550/arXiv.2403.05456
- arXiv:
- arXiv:2403.05456
- Bibcode:
- 2024arXiv240305456B
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematical Physics;
- Mathematics - Combinatorics;
- Mathematics - Quantum Algebra
- E-Print:
- 37 pages, 43 figures