A converse of dynamical Mordell--Lang conjecture in positive characteristic
Abstract
In this paper, we prove the converse of the dynamical Mordell--Lang conjecture in positive characteristic: For every subset $S \subseteq \mathbb{N}_0$ which is a union of finitely many arithmetic progressions along with finitely many $p$-sets of the form $\left \{ \sum_{j=1}^{m} c_j p^{k_jn_j} : n_j \in \mathbb{N}_0 \right \}$ ($c_j \in \mathbb{Q}$, $k_j \in \mathbb{N}_0$), there exist a split torus $X = \mathbb{G}_m^k$ defined over $K=\overline{\mathbb{F}_p}(t)$, an endomorphism $\Phi$ of $X$, $\alpha \in X(K)$ and a closed subvariety $V \subseteq X$ such that $\left \{ n \in \mathbb{N}_0 : \Phi^n(\alpha) \in V(K) \right \} = S$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2024
- DOI:
- arXiv:
- arXiv:2403.05107
- Bibcode:
- 2024arXiv240305107L
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Dynamical Systems
- E-Print:
- 6 pages