Schur positivity of difference of products of derived Schur polynomials
Abstract
To any Schur polynomial $s_{\lambda}$ one can associated its derived polynomials $s_{\lambda}{(i)}$ $i=0,\ldots,|\lambda|$ by the rule $$s_{\lambda}(x_1+t,\ldots,x_n+t) = \sum_i s_{\lambda}^{(i)}(x_1,\ldots,x_n) t^i.$$ We conjecture that $$(s_{\lambda}^{(i)})^2 - s_{\lambda}^{(i-1)} s_{\lambda}^{(i+1)}$$ is always Schur positive and prove this when $i=1$ for rectangles $\lambda = (k^\ell)$, for hooks $\lambda = (k, 1^{\ell -1})$, and when $\lambda = (k,k,1)$ or $\lambda = (3,2^{k-1})$.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2024
- DOI:
- 10.48550/arXiv.2403.04101
- arXiv:
- arXiv:2403.04101
- Bibcode:
- 2024arXiv240304101R
- Keywords:
-
- Mathematics - Combinatorics;
- 05E05
- E-Print:
- 20 pages, 18 figures