First eigenvalue characterization of Clifford hypersurfaces and Veronese surface
Abstract
We give an estimate for the first eigenvalue of the Schrödinger operator $L:=-\Delta-\sigma$ which is defined on the closed minimal submanifold $M^{n}$ in the unit sphere $\mathbb{S}^{n+m}$, where $\sigma$ is the square norm of the second fundamental form.
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2024
- DOI:
- 10.48550/arXiv.2403.01138
- arXiv:
- arXiv:2403.01138
- Bibcode:
- 2024arXiv240301138W
- Keywords:
-
- Mathematics - Differential Geometry
- E-Print:
- 12 pages