PRSA: PRompt Stealing Attacks against Large Language Models
Abstract
In recent years, "prompt as a service" has greatly enhanced the utility of large language models (LLMs) by enabling them to perform various downstream tasks efficiently without fine-tuning. This has also increased the commercial value of prompts. However, the potential risk of leakage in these commercialized prompts remains largely underexplored. In this paper, we introduce a novel attack framework, PRSA, designed for prompt stealing attacks against LLMs. The main idea of PRSA is to infer the intent behind a prompt by analyzing its input-output content, enabling the generation of a surrogate prompt that replicates the original's functionality. Specifically, PRSA mainly consists of two key phases: prompt mutation and prompt pruning. In the mutation phase, we propose a prompt attention algorithm based on output difference. The algorithm facilitates the generation of effective surrogate prompts by learning key factors that influence the accurate inference of prompt intent. During the pruning phase, we employ a two-step related word identification strategy to detect and mask words that are highly related to the input, thus improving the generalizability of the surrogate prompts. We verify the actual threat of PRSA through evaluation in both real-world settings, non-interactive and interactive prompt services. The results strongly confirm the PRSA's effectiveness and generalizability. We have reported these findings to prompt service providers and actively collaborate with them to implement defensive measures.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2024
- DOI:
- 10.48550/arXiv.2402.19200
- arXiv:
- arXiv:2402.19200
- Bibcode:
- 2024arXiv240219200Y
- Keywords:
-
- Computer Science - Cryptography and Security;
- Computer Science - Computation and Language