Item-side Fairness of Large Language Model-based Recommendation System
Abstract
Recommendation systems for Web content distribution intricately connect to the information access and exposure opportunities for vulnerable populations. The emergence of Large Language Models-based Recommendation System (LRS) may introduce additional societal challenges to recommendation systems due to the inherent biases in Large Language Models (LLMs). From the perspective of item-side fairness, there remains a lack of comprehensive investigation into the item-side fairness of LRS given the unique characteristics of LRS compared to conventional recommendation systems. To bridge this gap, this study examines the property of LRS with respect to item-side fairness and reveals the influencing factors of both historical users' interactions and inherent semantic biases of LLMs, shedding light on the need to extend conventional item-side fairness methods for LRS. Towards this goal, we develop a concise and effective framework called IFairLRS to enhance the item-side fairness of an LRS. IFairLRS covers the main stages of building an LRS with specifically adapted strategies to calibrate the recommendations of LRS. We utilize IFairLRS to fine-tune LLaMA, a representative LLM, on \textit{MovieLens} and \textit{Steam} datasets, and observe significant item-side fairness improvements. The code can be found in https://github.com/JiangM-C/IFairLRS.git.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2024
- DOI:
- arXiv:
- arXiv:2402.15215
- Bibcode:
- 2024arXiv240215215J
- Keywords:
-
- Computer Science - Information Retrieval
- E-Print:
- Accepted by the Proceedings of the ACM Web Conference 2024