On the torsion function for simply connected, open sets in $\R^2$
Abstract
For an open set $\Om \subset \R^2$ let $\lambda(\Om)$ denote the bottom of the spectrum of the Dirichlet Laplacian acting in $L^2(\Om)$. Let $w_\Om$ be the torsion function for $\Om$, and let $\|.\|_p$ denote the $L^p$ norm. It is shown there exists $\eta>0$ such that $\|w_{\Om}\|_{\infty} \lambda(\Om)\ge 1+\eta$ for any non-empty, open, simply connected set $\Om\subset \R^2$ with $\lb(\Om) >0$. Moreover, if the measure $|\Om|$ of $\Om$ is finite, then $\|w_{\Om}\|_1\lambda(\Om)\le (1-\eta)|\Om|$.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2024
- DOI:
- 10.48550/arXiv.2402.14448
- arXiv:
- arXiv:2402.14448
- Bibcode:
- 2024arXiv240214448V
- Keywords:
-
- Mathematics - Spectral Theory;
- Mathematics - Analysis of PDEs
- E-Print:
- 18 pages, 1 figure