General Theory of Static Response for Markov Jump Processes
Abstract
We consider Markov jump processes on a graph described by a rate matrix that depends on various control parameters. We derive explicit expressions for the static responses of edge currents and steady-state probabilities. We show that they are constrained by the graph topology (i.e., the incidence matrix) by deriving response relations (i.e., linear constraints linking the different responses) and topology-dependent bounds. For unicyclic networks, all scaled current responses are between zero and one and must sum to one. Applying these results to stochastic thermodynamics, we derive explicit expressions for the static response of fundamental currents (which carry the full dissipation) to fundamental thermodynamic forces (which drive the system away from equilibrium).
- Publication:
-
Physical Review Letters
- Pub Date:
- September 2024
- DOI:
- arXiv:
- arXiv:2402.13990
- Bibcode:
- 2024PhRvL.133j7103A
- Keywords:
-
- Statistical Physics; Classical;
- Nonlinear;
- and Complex Systems;
- Condensed Matter - Statistical Mechanics;
- Physics - Biological Physics;
- Physics - Chemical Physics
- E-Print:
- Accepted to Physical Review Letters