On Some Infinitary Logics
Abstract
We define a new class of infinitary logics $\mathscr L^1_{\kappa,\alpha}$ generalizing Shelah's logic $\mathbb L^1_\kappa$ defined in \cite{MR2869022}. If $\kappa=\beth_\kappa$ and $\alpha <\kappa$ is infinite then our logic coincides with $\mathbb L^1_\kappa$. We study the relation between these logics for different parameters $\kappa$ and $\alpha$. We give many examples of classes of structures that can or cannot be defined in these logics. Finally, we give a different version of Lindström's Theorem for $\mathbb L^1_\kappa$ in terms of the $\phi$-submodel relation.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2024
- DOI:
- 10.48550/arXiv.2402.13344
- arXiv:
- arXiv:2402.13344
- Bibcode:
- 2024arXiv240213344V
- Keywords:
-
- Mathematics - Logic;
- Primary: 03Bxx;
- 03C55;
- 03C75;
- 03C95;
- 03Exx