Conservation of Ramsey's theorem for pairs and well-foundedness
Abstract
In this article, we prove that Ramsey's theorem for pairs and two colors is $\Pi^1_1$-conservative over~$\mathsf{RCA}_0 + \mathsf{B}\Sigma^0_2 + \mathsf{WF}(\epsilon_0)$ and over~$\mathsf{RCA}_0 + \mathsf{B}\Sigma^0_2 + \bigcup_n \mathsf{WF}(\omega^\omega_n)$. These results improve theorems from Chong, Slaman and Yang and Kołodziejczyk and Yokoyama and belong to a long line of research towards the characterization of the first-order part of Ramsey's theorem for pairs.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2024
- DOI:
- 10.48550/arXiv.2402.11616
- arXiv:
- arXiv:2402.11616
- Bibcode:
- 2024arXiv240211616L
- Keywords:
-
- Mathematics - Logic
- E-Print:
- 36 pages