The Price of Adaptivity in Stochastic Convex Optimization
Abstract
We prove impossibility results for adaptivity in non-smooth stochastic convex optimization. Given a set of problem parameters we wish to adapt to, we define a "price of adaptivity" (PoA) that, roughly speaking, measures the multiplicative increase in suboptimality due to uncertainty in these parameters. When the initial distance to the optimum is unknown but a gradient norm bound is known, we show that the PoA is at least logarithmic for expected suboptimality, and double-logarithmic for median suboptimality. When there is uncertainty in both distance and gradient norm, we show that the PoA must be polynomial in the level of uncertainty. Our lower bounds nearly match existing upper bounds, and establish that there is no parameter-free lunch. En route, we also establish tight upper and lower bounds for (known-parameter) high-probability stochastic convex optimization with heavy-tailed and bounded noise, respectively.
- Publication:
-
arXiv e-prints
- Pub Date:
- February 2024
- DOI:
- 10.48550/arXiv.2402.10898
- arXiv:
- arXiv:2402.10898
- Bibcode:
- 2024arXiv240210898C
- Keywords:
-
- Mathematics - Optimization and Control;
- Computer Science - Machine Learning;
- Statistics - Machine Learning
- E-Print:
- Accepted for presentation at the Conference on Learning Theory (COLT) 2024