Bayesian Nonparametrics Meets Data-Driven Distributionally Robust Optimization
Abstract
Training machine learning and statistical models often involves optimizing a data-driven risk criterion. The risk is usually computed with respect to the empirical data distribution, but this may result in poor and unstable out-of-sample performance due to distributional uncertainty. In the spirit of distributionally robust optimization, we propose a novel robust criterion by combining insights from Bayesian nonparametric (i.e., Dirichlet process) theory and a recent decision-theoretic model of smooth ambiguity-averse preferences. First, we highlight novel connections with standard regularized empirical risk minimization techniques, among which Ridge and LASSO regressions. Then, we theoretically demonstrate the existence of favorable finite-sample and asymptotic statistical guarantees on the performance of the robust optimization procedure. For practical implementation, we propose and study tractable approximations of the criterion based on well-known Dirichlet process representations. We also show that the smoothness of the criterion naturally leads to standard gradient-based numerical optimization. Finally, we provide insights into the workings of our method by applying it to a variety of tasks based on simulated and real datasets.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2024
- DOI:
- arXiv:
- arXiv:2401.15771
- Bibcode:
- 2024arXiv240115771B
- Keywords:
-
- Statistics - Machine Learning;
- Computer Science - Machine Learning
- E-Print:
- Thirty-Eight Annual Conference on Neural Information Processing Systems (NeurIPS 2024)