LIV-GaussMap: LiDAR-Inertial-Visual Fusion for Real-time 3D Radiance Field Map Rendering
Abstract
We introduce an integrated precise LiDAR, Inertial, and Visual (LIV) multimodal sensor fused mapping system that builds on the differentiable \pre{surface splatting }\now{Gaussians} to improve the mapping fidelity, quality, and structural accuracy. Notably, this is also a novel form of tightly coupled map for LiDAR-visual-inertial sensor fusion. This system leverages the complementary characteristics of LiDAR and visual data to capture the geometric structures of large-scale 3D scenes and restore their visual surface information with high fidelity. The initialization for the scene's surface Gaussians and the sensor's poses of each frame are obtained using a LiDAR-inertial system with the feature of size-adaptive voxels. Then, we optimized and refined the Gaussians using visual-derived photometric gradients to optimize their quality and density. Our method is compatible with various types of LiDAR, including solid-state and mechanical LiDAR, supporting both repetitive and non-repetitive scanning modes. Bolstering structure construction through LiDAR and facilitating real-time generation of photorealistic renderings across diverse LIV datasets. It showcases notable resilience and versatility in generating real-time photorealistic scenes potentially for digital twins and virtual reality, while also holding potential applicability in real-time SLAM and robotics domains. We release our software and hardware and self-collected datasets to benefit the community.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2024
- DOI:
- arXiv:
- arXiv:2401.14857
- Bibcode:
- 2024arXiv240114857H
- Keywords:
-
- Computer Science - Robotics