Adaptive Mobile Manipulation for Articulated Objects In the Open World
Abstract
Deploying robots in open-ended unstructured environments such as homes has been a long-standing research problem. However, robots are often studied only in closed-off lab settings, and prior mobile manipulation work is restricted to pick-move-place, which is arguably just the tip of the iceberg in this area. In this paper, we introduce Open-World Mobile Manipulation System, a full-stack approach to tackle realistic articulated object operation, e.g. real-world doors, cabinets, drawers, and refrigerators in open-ended unstructured environments. The robot utilizes an adaptive learning framework to initially learns from a small set of data through behavior cloning, followed by learning from online practice on novel objects that fall outside the training distribution. We also develop a low-cost mobile manipulation hardware platform capable of safe and autonomous online adaptation in unstructured environments with a cost of around 20,000 USD. In our experiments we utilize 20 articulate objects across 4 buildings in the CMU campus. With less than an hour of online learning for each object, the system is able to increase success rate from 50% of BC pre-training to 95% using online adaptation. Video results at https://open-world-mobilemanip.github.io/
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2024
- DOI:
- 10.48550/arXiv.2401.14403
- arXiv:
- arXiv:2401.14403
- Bibcode:
- 2024arXiv240114403X
- Keywords:
-
- Computer Science - Robotics;
- Computer Science - Artificial Intelligence;
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Machine Learning;
- Electrical Engineering and Systems Science - Systems and Control
- E-Print:
- Website at https://open-world-mobilemanip.github.io/