The abelianization of $\operatorname{SL}_2(\mathbb{Z}[\frac{1}{m}])$
Abstract
For all $m \geq 1$, we prove that the abelianization of $\operatorname{SL}_2(\mathbb{Z}[\frac{1}{m}])$ is (1) trivial if $6 \mid m$; (2) $\mathbb{Z} / 3\mathbb{Z}$ if $2 \mid m$ and $\gcd(3,m)=1$; (3) $\mathbb{Z} / 4 \mathbb{Z}$ if $3 \mid m$ and $\gcd(2,m)=1$; and (4) $\mathbb{Z} / {12}\mathbb{Z} \cong \mathbb{Z} / 3\mathbb{Z} \times \mathbb{Z} / 4\mathbb{Z}$ if $\gcd(6,m)=1$. This completes known computational results of Bui Anh & Ellis for $m \leq 50$. The proof is completely elementary, and in particular does not use the congruence subgroup property. We also find a new presentation for $\operatorname{SL}_2(\mathbb{Z}[\frac{1}{2}])$. This presentation has two generators and three relators. Thus, $\operatorname{SL}_2(\mathbb{Z}[\frac{1}{2}])$ admits a presentation with deficiency equal to the rank of its Schur multiplier. This also gives new and very simple presentations for the finite groups $\operatorname{SL}_2(\mathbb{Z} / m \mathbb{Z})$, where $m$ is odd.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2024
- DOI:
- arXiv:
- arXiv:2401.08146
- Bibcode:
- 2024arXiv240108146N
- Keywords:
-
- Mathematics - K-Theory and Homology;
- Mathematics - Group Theory;
- 13D03 (primary);
- 20H25;
- 20F05 (secondary)
- E-Print:
- 3 pages. Comments welcome!