Hamilton cycles in random digraphs with minimum degree at least one
Abstract
We study the existence of a directed Hamilton cycle in random digraphs with $m$ edges where we condition on minimum in- and out-degree at least one. Denote such a random graph by $D_{n,m}^{(\delta\geq1)}$. We prove that if $m=\tfrac n2(\log n+2\log\log n+c_n)$ then \[ \lim_{n\to\infty}\Pr(D_{n,m}^{(\delta\geq1)}\text{ is Hamiltonian})=\begin{cases}0&c_n\to-\infty.\\e^{-e^{-c}/4}&c_n\to c.\\1&c_n\to\infty.\end{cases} \]
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2023
- DOI:
- arXiv:
- arXiv:2312.06781
- Bibcode:
- 2023arXiv231206781C
- Keywords:
-
- Mathematics - Combinatorics