The equivariant genera of marked strongly invertible knots associated with $2$-bridge knots
Abstract
A marked strongly invertible knot is a triple $(K,h,\delta)$ of a knot $K$ in $S^3$, a strong inversion $h$ of $K$, and a subarc $\delta \subset \operatorname{Fix}(h)\cong S^1$ bounded by $\operatorname{Fix}(h)\cap K\cong S^0$. An invariant Seifert surface for $(K,h,\delta)$ is an $h$-invariant Seifert surface for $K$ that intersects $\operatorname{Fix}(h)$ in the arc $\delta$. In this paper, we completely determine the equivariant genus (the minimum of the genera of invariant Seifert surfaces for $(K,h,\delta)$) of every marked strongly invertible knot $(K,h,\delta)$ with $K$ a $2$-bridge knot.
- Publication:
-
arXiv e-prints
- Pub Date:
- December 2023
- DOI:
- arXiv:
- arXiv:2312.06156
- Bibcode:
- 2023arXiv231206156H
- Keywords:
-
- Mathematics - Geometric Topology;
- Primary 57K10;
- Secondary 57M60
- E-Print:
- v2: minor revision, to appear in Michigan Math. Journal