Matrix discrepancy and the log-rank conjecture
Abstract
Given an $m\times n$ binary matrix $M$ with $|M|=p\cdot mn$ (where $|M|$ denotes the number of 1 entries), define the discrepancy of $M$ as $\mbox{disc}(M)=\displaystyle\max_{X\subset [m], Y\subset [n]}\big||M[X\times Y]|-p|X|\cdot |Y|\big|$. Using semidefinite programming and spectral techniques, we prove that if $\mbox{rank}(M)\leq r$ and $p\leq 1/2$, then $$\mbox{disc}(M)\geq \Omega(mn)\cdot \min\left\{p,\frac{p^{1/2}}{\sqrt{r}}\right\}.$$ We use this result to obtain a modest improvement of Lovett's best known upper bound on the log-rank conjecture. We prove that any $m\times n$ binary matrix $M$ of rank at most $r$ contains an $(m\cdot 2^{-O(\sqrt{r})})\times (n\cdot 2^{-O(\sqrt{r})})$ sized all-1 or all-0 submatrix, which implies that the deterministic communication complexity of any Boolean function of rank $r$ is at most $O(\sqrt{r})$.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.18524
- Bibcode:
- 2023arXiv231118524S
- Keywords:
-
- Mathematics - Combinatorics;
- Computer Science - Computational Complexity
- E-Print:
- 9 pages