Counting sign changes of partial sums of random multiplicative functions
Abstract
Let $f$ be a Rademacher random multiplicative function. Let $$M_f(u):=\sum_{n \leq u} f(n)$$ be the partial sum of $f$. Let $V_f(x)$ denote the number of sign changes of $M_f(u)$ up to $x$. We show that for any constant $c > 2$, $$V_f(x) = \Omega ((\log \log \log x)^{1/c} )$$ almost surely.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.16358
- Bibcode:
- 2023arXiv231116358G
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Probability
- E-Print:
- 25 pages