A short note on the Schiffer's conjecture for a class of centrally symmetric convex domains in $\mathbb{R}^2$
Abstract
Let $\Omega$ be a bounded centrally symmetric domain in $\mathbb{R}^2$ with analytic boundary $\partial \Omega$ and center $c$. Let $\tau = \tau(\Omega)$ be the number of points $p$ on $\partial \Omega$ such that the normal line to $\partial \Omega$ at $p$ passes through $c$. We show that if $\tau < 8$ then $\Omega$ satisfies the Schiffer's conjecture.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.14442
- Bibcode:
- 2023arXiv231114442M
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35J05;
- 35J25;
- 35B38
- E-Print:
- 7 pages