Optimal divisions of a convex body
Abstract
For a convex body $C$ in $\mathbb{R}^d$ and a division of $C$ into convex subsets $C_1,\ldots,C_n$, we can consider $max\{F(C_1),\ldots, F(C_n)\}$ (respectively, $min\{F(C_1),\ldots, F(C_n)\}$), where $F$ represents one of these classical geometric magnitudes: the diameter, the minimal width, or the inradius. In this work we study the divisions of $C$ minimizing (respectively, maximizing) the previous value, as well as other related questions.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.13882
- Bibcode:
- 2023arXiv231113882C
- Keywords:
-
- Mathematics - Metric Geometry;
- 52A20
- E-Print:
- 23 pages, 18 figures