Error estimation for the non-convex cosparse optimization problem
Abstract
When the signal does not have a sparse structure but has sparsity under a certain transformation domain, Nam et al. \cite{NS} introduced the cosparse analysis model, which provides a dual perspective on the sparse representation model. This paper mainly discusses the error estimation of non-convex $\ell_p(0<p<1)$ relaxation cosparse optimization model with noise condition. Compared with the existing literature, under the same conditions, the value range of the $\Omega$-RIP constant $\delta_{7s}$ given in this paper is wider. When $p=0.5$ and $\delta_{7s}=0.5$, the error constants $C_0$ and $C_1$ in this paper are better than those corresponding results in the literature \cite{Cand,LiSong1}. Moreover, when $0<p<1$, the error results of the non-convex relaxation method are significantly smaller than those of the convex relaxation method. The experimental results verify the correctness of the theoretical analysis and illustrate that the $\ell_p(0<p<1)$ method can provide robust reconstruction for cosparse optimization problems.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.13794
- Bibcode:
- 2023arXiv231113794L
- Keywords:
-
- Mathematics - Optimization and Control;
- Computer Science - Information Theory;
- 90C25