Finite groups with some subgroups satisfying the partial $ \Pi $-property
Abstract
Let $ H $ be a subgroup of a finite group $ G $. We say that $ H $ satisfies the partial $ \Pi $-property in $ G $ if there exists a chief series $ \varGamma_{G}: 1 =G_{0} < G_{1} < \cdot\cdot\cdot < G_{n}= G $ of $ G $ such that for every $ G $-chief factor $ G_{i}/G_{i-1} $ $(1\leq i\leq n) $ of $ \varGamma_{G} $, $ | G / G_{i-1} : N _{G/G_{i-1}} (HG_{i-1}/G_{i-1}\cap G_{i}/G_{i-1})| $ is a $ \pi (HG_{i-1}/G_{i-1}\cap G_{i}/G_{i-1}) $-number. In this paper, we investigate how some subgroups satisfying the partial $\Pi$-property influence the structure of finite groups.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.12633
- Bibcode:
- 2023arXiv231112633Q
- Keywords:
-
- Mathematics - Group Theory