Topological Diagnosis of Strongly Correlated Electron Systems
Abstract
The intersection of electronic topology and strong correlations offers a rich platform to discover exotic quantum phases of matter and unusual materials. An overarching challenge that impedes the discovery is how to diagnose topology in strongly correlated settings, as exemplified by Mott insulators. Here, we develop a general framework to address this outstanding question and illustrate its power in the case of Mott insulators. The concept of Green's function Berry curvature -- which is frequency dependent -- is introduced. We apply this notion in a system that contains symmetry-protected nodes in its noninteracting bandstructure; strong correlations drive the system into a Mott insulating state, creating contours in frequency-momentum space where the Green's function vanishes. The Green's function Berry flux of such zeros is found to be quantized, and is as such direct probe of the system's topology. Our framework allows for a comprehensive search of strongly correlated topological materials with Green's function topology.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- 10.48550/arXiv.2311.12031
- arXiv:
- arXiv:2311.12031
- Bibcode:
- 2023arXiv231112031S
- Keywords:
-
- Condensed Matter - Strongly Correlated Electrons;
- Condensed Matter - Mesoscale and Nanoscale Physics;
- Condensed Matter - Materials Science
- E-Print:
- 38 pages, 13 figures including Supplemental Information