High Probability Guarantees for Random Reshuffling
Abstract
We consider the stochastic gradient method with random reshuffling ($\mathsf{RR}$) for tackling smooth nonconvex optimization problems. $\mathsf{RR}$ finds broad applications in practice, notably in training neural networks. In this work, we first investigate the concentration property of $\mathsf{RR}$'s sampling procedure and establish a new high probability sample complexity guarantee for driving the gradient (without expectation) below $\varepsilon$, which effectively characterizes the efficiency of a single $\mathsf{RR}$ execution. Our derived complexity matches the best existing in-expectation one up to a logarithmic term while imposing no additional assumptions nor changing $\mathsf{RR}$'s updating rule. Furthermore, by leveraging our derived high probability descent property and bound on the stochastic error, we propose a simple and computable stopping criterion for $\mathsf{RR}$ (denoted as $\mathsf{RR}$-$\mathsf{sc}$). This criterion is guaranteed to be triggered after a finite number of iterations, and then $\mathsf{RR}$-$\mathsf{sc}$ returns an iterate with its gradient below $\varepsilon$ with high probability. Moreover, building on the proposed stopping criterion, we design a perturbed random reshuffling method ($\mathsf{p}$-$\mathsf{RR}$) that involves an additional randomized perturbation procedure near stationary points. We derive that $\mathsf{p}$-$\mathsf{RR}$ provably escapes strict saddle points and efficiently returns a second-order stationary point with high probability, without making any sub-Gaussian tail-type assumptions on the stochastic gradient errors. Finally, we conduct numerical experiments on neural network training to support our theoretical findings.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- 10.48550/arXiv.2311.11841
- arXiv:
- arXiv:2311.11841
- Bibcode:
- 2023arXiv231111841Y
- Keywords:
-
- Mathematics - Optimization and Control;
- Computer Science - Machine Learning;
- 90C30;
- 90C06;
- 90C26;
- 90C15
- E-Print:
- 21 pages, 3 figures