Quantum approximated cloning-assisted density matrix exponentiation
Abstract
Classical information loading is an essential task for many processing quantum algorithms, constituting a cornerstone in the field of quantum machine learning. In particular, the embedding techniques based on Hamiltonian simulation techniques enable the loading of matrices into quantum computers. A representative example of these methods is the Lloyd-Mohseni-Rebentrost protocol, which efficiently implements matrix exponentiation when multiple copies of a quantum state are available. However, this is a quite ideal set up, and in a realistic scenario, the copies are limited and the non-cloning theorem prevents from producing more exact copies in order to increase the accuracy of the protocol. Here, we propose a method to circumvent this limitation by introducing imperfect quantum copies that significantly enhance the performance of previous proposals.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.11751
- Bibcode:
- 2023arXiv231111751R
- Keywords:
-
- Quantum Physics