SOLPS-ITER simulation of an X-point radiator in TCV
Abstract
SOLPS-ITER simulation is performed to reproduce the X-point radiator recently observed in nitrogen-seeded TCV experiments, which is a scenario that may be favorable to solve the power exhaust problems in future fusion devices. The simulations reveal the transition from the detached regime without XPR to the XPR regime, when increasing the nitrogen seeding rate. A cold X-point core surrounded by ionizing and radiative mentals is formed inside the separatrix and slightly above the X-point, where more than 90% of the total input power is dissipated. The cold X-point core exhibits a temperature of approximately 1eV and features high recombination rate to host the convective fluxes from the ionizing mental. Increasing nitrogen seeding rate also moves the nitrogen ionization front away from the target faster than the nitrogen stagnation point, which enhances the divertor nitrogen leakage to the main chamber and benefits the XPR region cooling. Carbon radiation decreases as the nitrogen seeding increases, and carbon radiation contributes to above 5% of the core impurity radiation before entering the XPR, which decreases to 2.8% when reaching the XPR. Both baffled and unbaffled divertor geometries are simulated and compared, showing that baffles facilitate the access to XPR by increasing the X-point neutral density, but requires higher seeding rate to enter the XPR regime.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- arXiv:
- arXiv:2311.07295
- Bibcode:
- 2023arXiv231107295S
- Keywords:
-
- Physics - Plasma Physics