Improving Cardiovascular Disease Prediction Through Comparative Analysis of Machine Learning Models: A Case Study on Myocardial Infarction
Abstract
Cardiovascular disease remains a leading cause of mortality in the contemporary world. Its association with smoking, elevated blood pressure, and cholesterol levels underscores the significance of these risk factors. This study addresses the challenge of predicting myocardial illness, a formidable task in medical research. Accurate predictions are pivotal for refining healthcare strategies. This investigation conducts a comparative analysis of six distinct machine learning models: Logistic Regression, Support Vector Machine, Decision Tree, Bagging, XGBoost, and LightGBM. The attained outcomes exhibit promise, with accuracy rates as follows: Logistic Regression (81.00%), Support Vector Machine (75.01%), XGBoost (92.72%), LightGBM (90.60%), Decision Tree (82.30%), and Bagging (83.01%). Notably, XGBoost emerges as the top-performing model. These findings underscore its potential to enhance predictive precision for coronary infarction. As the prevalence of cardiovascular risk factors persists, incorporating advanced machine learning techniques holds the potential to refine proactive medical interventions.
- Publication:
-
arXiv e-prints
- Pub Date:
- November 2023
- DOI:
- 10.48550/arXiv.2311.00517
- arXiv:
- arXiv:2311.00517
- Bibcode:
- 2023arXiv231100517M
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Computer Vision and Pattern Recognition;
- Computer Science - Human-Computer Interaction
- E-Print:
- 2023 15th International Conference on Innovations in Information Technology (IIT) - Track 2: Artificial Intelligence in Data Science